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Abstract

A theoretical analysis of fully developed forced convection flow through a heterogeneous porous medium with

isoflux boundary condition is carried out by invoking a varying viscosity model to determine its effect on the resulting

heat and fluid flow characteristics. Two different types of permeability and thermal conductivity variations, in the

transverse direction of the channel, are accounted for in the analysis, viz., continuous weak and step-wise variations.

Analytical solutions are obtained and graphical illustrations are presented to reveal the influence of thermal conduc-

tivity, permeability and viscosity variations. The results indicate that the viscosity variations have significant effect on

the resulting heat transfer characteristics interpreted in terms of the Nusselt number. Moreover, the results reveal that

the heat transfer rate decreases with the increase of permeability ratio for strong viscosity variations, which cannot be

captured if a constant viscosity model is assumed.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Heat and fluid flow through porous materials occur

in a large number of industrial applications ranging

from simulation of petroleum reservoirs, packed bed

catalytic reactors, porous insulation and heat pipe

wicking structures, and reviews are well documented

[1,2]. Recent applications of porous media flows include

the flow of liquids in biological and physiological pro-

cesses, pebble-bed nuclear reactors and cooling of tur-

bine blades in the hot portion of a turbo-expander. For

simple problems, the theory of homogeneous porous

medium may be sufficient, but for complicated geometry

a thorough understanding of the fluid flows in both

homogeneous and heterogeneous porous media becomes

essential. This motivated a few to discuss heat and fluid

flow in heterogeneous porous media. Detailed reviews of

heat and fluid flow through anisotropic porous layers

are found in Storesletten [3], Vasseur and Robillard [4],

Vafai [5]. Vadasz [6] is one of the first to study the fluid

flow through heterogeneous porous media in a rotating

square channel, with reference to flows in packed-bed

mechanically agitated vessels that are widely used in

food processing and chemical engineering industries. His

investigations reveal that for a heterogeneous porous

medium with spatial dependent permeability, the flow is

no longer irrotational and therefore the effects of rota-

tion become most important, unlike the flows through

homogeneous porous media. Continued work resulted

in Vadasz and Havstad [7] and Havstad and Vadasz [8].

More recently, evaporation heat transfer in bi-porous

media was theoretically analyzed by Wang and Catton

[9] with reference to thermal management in electronics

chips, laser diode arrays and high power optics, where it

is necessary to cool the heat sources whose heat flux

exceeds 100 W/cm2. Their results revealed that the fluid

flow in capillaries covering a bi-porous medium was

capable of removing higher order heat flux as mentioned

above. Generally, the development of micro-scale and

nano-scale technology has led to the demand of high

performance heat transfer devices in order to remove
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high density thermal energy and avoid thermal damages

due to heat accumulations and this also encouraged

fundamental studies on heat and fluid flow in hetero-

geneous porous media. Rees and Postelnicu [10] dis-

cussed the onset of convection in an inclined porous

layer, assumed to be anisotropic with respect to both

permeability and diffusivity. They determined not only

how much the critical Rayleigh number varies when the

layer is inclined but also the wave number and the angle

that the fluid roll makes with the direction at which the

layer is inclined.

Nield and Kuznetsov [11] studied the global hetero-

geneity effects on the fully developed flow between par-

allel plates occupied by a heterogeneous porous medium

in the presence of isoflux and isotemperature bound-

aries. They considered two types of permeability and

thermal conductivity, namely, weak continuous and

step-wise variations. Their investigations demonstrated

that the effect of permeability variation is that an above-

average permeability near the walls leads to an increase

in the Nusselt number. Furthermore, the effect of ther-

mal conductivity variation was found to be more com-

plex with two opposing effects and the Nusselt number

was found to be not always a monotonic function of

conductivity variation. Thus the concept of hetero-

geneity in the porous medium may be used to replace the

homogeneous porous medium employed in optimizing

the critical heat flux that allows re-wetting in micro-heat

pipes (Peterson [12]). The extent to which the hetero-

geneity effects may be exploited in such an application is

still not known completely.

Earlier studies by Ramirez and Saez [13] and Seddeek

[14], discussed the influence of temperature dependent

viscosity variations on the resulting heat and fluid flows

in a homogeneous porous medium. All these investiga-

tions concluded that the effect of variation in viscosity

should be taken into account, even for relatively low

temperature gradients, to match the experimental ob-

servations. The importance of inclusion of viscosity

variation in thermal analysis, especially in porous media,

is such that for example, estimation of the effective

thermal conductivity in water results in variations of the

order of 50%, when their respective viscosity is assumed

to be a constant and when compared with that of the

varying viscosity model [13]. Also, as the Peclet number

is defined through thermal conductivity, its effect on the

Nusselt number is strong especially for values of the

viscosity variation parameter dð¼ aT1, as in [13], where

a is the temperature coefficient of viscosity and T1 is the

reference temperature) around )1. For instance, the

calculated value of the Nusselt number Nu for d ¼ 0

(constant viscosity model) and the Peclet number

Pe ¼ 100 is 6.5, and for d ¼ �1 (varying viscosity model)

and Pe ¼ 100, the Nu is found to be around 2 [13].

This made us realize the importance of viscosity

variations not only in a homogeneous porous medium,

but also in a heterogeneous medium; and thus motivated

the present study, in which the work of Nield and

Nomenclature

cp specific heat at constant pressure

Da Darcy number

G applied pressure gradient

H half channel width

k thermal conductivity

k mean value of k
~kk k=k
K permeability

K mean value of KeKK K=K
Nu Nusselt number

p0 dimensional pressure

Pe Peclet number

q00 wall heat flux at the outer boundary

u0 dimensional velocity

u dimensionless velocity

U 0 dimensional mean velocity

T 0 dimensional temperature

T 0
m dimensional bulk mean temperature

T 0
w dimensional wall temperature

T1 reference temperature

T dimensionless temperature

x0, y0 dimensional coordinates

x, y dimensionless coordinates

Greek symbols

a temperature coefficient of viscosity defined

in Eq. (A.1)

b viscosity variation parameter defined in Eq.

(A.5)

c a constant defined in Eq. (A.3)

ek , eK coefficients defined in Eq. (12a,b)

q density

l fluid viscosity

l0 reference fluid viscosity

n dimensionless coordinate defined in Fig. 1

f a constant defined in Eq. (5b)

Subscripts

1, 2 referring to regions 1 and 2 in Fig. 1, res-

pectively

2330 K. Sundaravadivelu, C.P. Tso / International Journal of Heat and Mass Transfer 46 (2003) 2329–2339



Kuznetsov is extended to include temperature dependent

properties, as presented below.

2. The Model

The permeability and thermal conductivity are al-

lowed to vary non-uniformly in space and therefore are

defined respectively as

eKK ¼ K

K
; ~kk ¼ k

k
; ð1a; bÞ

where an over bar denotes a mean value taken over the

volume occupied by the porous medium. It is assumed

that for this steady fully developed situation, we have an

unidirectional flow with velocity u0 in the x0 as shown in

Fig. 1. Due to axis-symmetric assumption in the heat

and fluid flow behaviors, only upper half of the channel

is depicted in Fig. 1 and the subsequent analysis is also

carried out only in this region without loss of generality.

We further assume that K and k are functions of y0 only.
The Darcy equation for the pressure gradient is then

written as

G ¼ l
K
u0; ð2Þ

where G ¼ �dp=dx. The use of this model here is not

only to simplify the analysis but also to compare with

that of the earlier model by Nield and Kuznetsov [11],

wherein they restricted to the Dupuit–Darcy–Forchei-

mer model and discussed cases for which it reduced to

the Darcy model. From the investigations of Nield and

Kuznetsov, the distribution of temperature in space

(across the channel) is found to be almost in a linear

fashion (i.e., decreases with increase of y0), especially for

values of K2=K1 and k2=k1 around 1. Hence the linear

dependence of viscosity on temperature, assumed for

most of the common fluids, is approximated as a linear

dependence on y (dimensionless form of y0) as,

l ¼ l0½ð1� bÞ þ by	; ð3Þ
where l0 is the reference fluid viscosity computed at the

channel wall temperature (y0 ¼ H ) and the constant b is

assumed to be small when compared to unity (for details

see Appendix A).

Substituting Eq. (3) in to Eq. (2), and using the

variables

x ¼ x0

H
; y ¼ y0

H
; u ¼ l0u

0

GH 2
;

the dimensionless form of Eq. (2), together with the

viscosity variation, can be written as

u ¼
eKK

ð1� bÞDa 1

�
þ b

ð1� bÞ y
��1

; ð4Þ

where the Darcy number is defined by Da ¼ K=H 2.

By defining the mean velocity and bulk mean tem-

perature (a velocity-weighted average temperature over

the channel cross section) respectively as [15,16]

U 0 ¼ 1

H

Z H

0

u0 dy0; T 0
m ¼ 1

HU 0

Z H

0

u0T 0 dy0;

and further defining dimensionless variables

u ¼ u0

U 0 T ¼ T 0 � T 0
w

T 0
m � T 0

w

;

it can be shown that

u ¼ eKK 1

��
� b

1� b

� �
y
�
þ b

2ð1� bÞ

� ��
: ð5aÞ

i.e.,

u ¼ eKK 1

�
� f y

�
� 1

2

��
; ð5bÞ

where f ¼ ½b=ð1� bÞ	 is a constant.

ξH

H

Porous medium of permeability K2

and effective conductivity k2

Porous medium of permeability K1

and effective conductivity k1

Isoflux boundary at the wall

'y

'x

REGION 2

REGION 1

Flow direction

Flow direction

Constant q"

'
1u

'
2u

0

Centre
line

Fig. 1. Upper half of parallel plate channel (for step-wise variation case).
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The heat transfer rate calculated in terms of Nusselt

number can be defined as

Nu ¼ 2Hq00

kðT 0
w � T 0

mÞ
: ð6Þ

The thermal energy equation is

u0
oT 0

ox0
¼ 1

qcp

o

oy0
k
oT 0

oy0

� �
; ð7aÞ

i.e.,

u0
oT 0

ox0
¼ 1

qcp

ok
oy0

oT 0

oy0

� �
þ k

qcp

o2T 0

oy02

� �
; ð7bÞ

since k is considered to vary across the channel height.

The exclusion of the axial conduction term in the above

thermal energy equation has been justified for cases of

flow in uniform wall heat flux or uniform wall temper-

ature, when the velocity profile is similar to that of slug

flow, which is presently the case for flow in porous

medium [17].

Now the gradient of k in Eq. (7b) is zero when it is

assumed to vary in a step-wise manner in space (see

Section 2.2). In the case of continuous variation (Section

2.1), the first term, involving ðok=dy0Þ, on the right hand

side of Eq. (7b) is neglected in the present analysis by

assuming that its value is small when compared with the

second term.

Applying the first law of thermodynamics to a ther-

mally fully developed flow with isoflux boundary con-

dition, we have the results [15,16]

oT 0

ox0
¼ oT 0

m

ox0
¼ oT 0

w

ox0
¼ q00

qcpHU
¼ constant; ð8Þ

where it is noted that the dimensional temperature gra-

dient in the axial direction is non-zero.

Thus the thermal energy equation (7b) becomes, with

the aid of Eqs. (5), (6) and (8), and in dimensionless

form,

d2T
dy2

¼ � 1

2~kk
Nuu ð9Þ

and for the Darcy flow in the presence of viscosity

variation, it is

d2T
dy2

¼ � 1

2~kk
NueKK 1

�
þ f y

�
� 1

2

���1

: ð10Þ

The first boundary condition for Eq. (10) is, by

symmetry,

dT
dy

				
y¼0

¼ 0: ð11aÞ

The second boundary condition is the isoflux condi-

tion at y0 ¼ H . This is a constant q00 ¼ qcpHU 0ðdT 0
w=dx

0Þ

 �

,

which can alternatively be expressed as

T
		
y¼1

¼ 0; ð11bÞ

because (11b) implies that at the wall, T 0 ¼ T 0
w, where T

0
w

varies linearly for the case of isoflux condition in ther-

mally developed flow, as described by Eq. (8).

2.1. Continuous weak variation case

We first consider the continuous weak variation case

where the permeability and thermal conductivity distri-

butions are varying slightly away from their constant

values and are

K ¼ K 1

�
þ eK

y0

H

�
� 1

2

��
;

k ¼ k 1

�
þ ek

y0

H

�
� 1

2

��
;

ð12a; bÞ

where the coefficients eK and ek are each assumed to be

small compared with unity. Then dimensionless form of

Eqs. (12a,b) are

eKK ¼ 1þ eK y
�

� 1

2

�
;

~kk ¼ 1þ ek y
�

� 1

2

�
:

ð13a; bÞ

Using Eqs. (13a,b) in Eq. (10), and approximating to

first order in small quantities, we obtain

d2T
dy2

¼ �Nu
2

1

�
þ ðeK � ek � fÞ y

�
� 1

2

��
: ð14Þ

The solution of Eq. (14) subject to the boundary

conditions in Eqs. (11a,b) is

T ðyÞ ¼ �Nu
24

6ðy2
�

� 1Þ þ ðeK � ek � fÞð2y3 � 3y2 þ 1Þ


:

ð15Þ

The determining compatibility condition isZ 1

0

uT dy ¼ 1: ð16Þ

Finally, substitution of the expressions Eqs. (5) and

(15) into (16) leads to the first order result

Nu ¼ 6 1

�
þ 1

4
eK � 1

8
ek �

f
4

�
: ð17Þ

This reduces to the result of Nield and Kuznetsov

[11] on substituting f ¼ 0. Further more, for slug flow in

an isoflux non-porous channel, it is well-known that

Nu ¼ 6 ðeK ¼ ek ¼ 0Þ, serving as a check to our result.

2.2. Step-wise variation case

For the step-wise variation case, it is assumed that,

referring to Fig. 1,
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K ¼ K1 and k ¼ k1 for 0 < y0 < nH ; ð18a; bÞ

K ¼ K2 and k ¼ k2 for nH < y0 < H ; ð19a; bÞ

The mean values are given by

K ¼ nK1 þ ð1� nÞK2;

k ¼ nk1 þ ð1� nÞk2:
ð20a; bÞ

We writeeKKi ¼
Ki

K
and ~kki ¼

ki
~kk
; for i ¼ 1; 2:

The velocity distributions are then, from Eq. (5b),

u1 ¼ eKK1 1

�
� f y

�
� 1

2

��
; for 0 < y < n;

u2 ¼ eKK2 1

�
� f y

�
� 1

2

��
; for n < y < 1:

ð21a; bÞ

We have now to solve the differential equation pair

d2T 1

dy2
¼ � 1

2~kk1
NueKK1 1

�
� f y

�
� 1

2

��
; for 0 < y < n;

d2T 2

dy2
¼ � 1

2~kk2
NueKK2 1

�
� f y

�
� 1

2

��
; for n < y < 1;

ð22a; bÞ

subject to boundary conditions

dT 1

dy

				
y¼0

¼ 0; T 2

		
y¼1

¼ 0; ð23a; bÞ

as well as the matching conditions at the interface for

both temperature and heat flux:

T 1ðnÞ ¼ T 2ðnÞ; �~kk1
oT 1

oy
ðnÞ ¼ �~kk2

oT 2

oy
ðnÞ: ð24a; bÞ

It can be shown that the solution is

T 1ðyÞ ¼
Nu
4

eKK1

~kk1

f
3
ðy3

�(
� n3Þþ n2 � y2

�

þ
eKK2

~kk2

�
� 2nþ n2 þ 1þ f

6
ð2y3 þ 9n2 � 14n� 6n3 þ 4Þ

�
þ

eKK1

~kk2
2n
�

� 2n2 þ fðn3 � n2Þ
�)

T 2ðyÞ ¼
Nu
4

eKK2

~kk2

f
6
ð2y3

�(
� 3y2 � 9y� 6n2yþ 2nyþ 6n2

� 6nþ 4Þþ 1� 2nyþ 2ny� y2
�

þ
eKK1

~kk2
2n
�

� 2nyþ fðn2y� ny� n2 þ nÞ
�)

ð25a;bÞ

Substituting the above into the determining com-

patibility condition (Eq. (16)) then yields the final Nus-

selt number expression

Nu ¼ 6
eKK 2
1

~kk1
n3

�(,
þ 3f

2

�
� 3n4

4
þ 2

3

��

þ
eKK 2
1

~kk2
3n2ð1

�
� nÞ þ 3f

2
ð2n2 � 2n3Þ

�
þ

eKK1
eKK2

~kk2
3nð1

�
� 2n þ n2Þ þ 3f

2

�
� 13

4
n4

þ 7

2
n3 � 4n2 þ n

2
þ 2

3

��
þ

eKK 2
2

~kk2
ð1

�
� nÞ3

þ 3f
2

5

6
n4

�
� 8

3
n3 þ 15

2
n2 � 5

2
n þ 1

12

��)
: ð26Þ

For the homogeneous case and constant viscosity

model (i.e. n ¼ 1, f ¼ 0 and eKK1 ¼ eKK2 ¼ ~kk1 ¼ ~kk2 ¼ 1) this

expression again reduces to Nu ¼ 6, the slug flow result.

3. Results and discussions

Firstly we re-emphasize that the results are computed

for values of K2=K1 and k2=k1 around one for validity of

near linear assumption of temperature distribution in

space, so as to assume a linearly varying viscosity model

in space. Results are for two different types of thermal

conductivity and permeability variations as given in Eqs.

(13a,b), (20a,b) and for some fixed values of b, viz., 0,
0.05, 0.2.

The present viscosity model can be checked by

computing the viscosity along the channel transverse

direction, using Eqs. (3) and (A.2), and by approxi-

mating the dimensionless temperature therein (i.e., in

Eq. (A.2)) through expressions given in Eqs. (25a,b).

Calculated viscosities are graphically shown in Fig. 2,

which shows that the present approximation for vis-

cosity, i.e., Eq. (3), may yield satisfactory results, espe-

cially for low values of b. In the above calculations,

values of b are chosen arbitrarily as 0.05 and 0.2, re-

spectively. The value of c is obtained by approximating

the dimensionless temperature reported in [11] using a

linear profile in transverse coordinate and calculating

the normal component of temperature gradient (i.e.

c ¼ �dT=dy, see Appendix A). In an actual system, b
may be calculated if the bulk mean temperature, channel

wall temperature, first order temperature coefficient of

viscosity and transverse temperature gradient at any

point along the transverse direction are known.

For the continuous weak variation case, the effects of

permeability and conductivity variations on temperature

and velocity are shown in Fig. 3. Fig. 3(a) depicts the

temperature distribution across the channel for a con-

stant viscosity model (b ¼ 0) and for increasing values of

eK and ek . Increasing values of eK or ek leads to a slight

increase in the temperature distribution across the

channel when compared to that of both eK and ek being
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equal in their magnitudes. A similar trend is also ob-

served in the case of a varying viscosity model (b ¼ 0:2),
except that the temperature is being reduced slightly,

Fig. 3(b). This is because of the increase in the local

velocities near the walls in the case of b ¼ 0 when

compared to that of non-zero b (see Fig. 3(c) and (d))

and thus resulting in the enhancement of lateral mixing.

The velocity distributions for both the constant and

variable viscosity model are shown in Fig. 3(c) and (d).

For the constant viscosity model case, the velocity is

found to decrease in the lower half of the channel (i.e.,

0 < y < 0:5) and increase in the upper half (0:5 > y > 1),

for increasing values of eK . This may be explained

through Eq. (5), that the sign-changing behavior of the

term ðy � ð1=2ÞÞ for values of y less than and greater

than 0.5 results in such behavior in the lower and upper

half of the channel. The effect of non-zero b i.e. varying

viscosity model) on the velocity distribution is found to

result in a similar behavior except with an increase in the

local velocity at the lower half of the channel at higher

values of eK . These results together with Eq. (5) reveal
Fig. 2. Comparison of viscosity acquired from two different

models.

Fig. 3. Temperature and velocity distributions for continuous weak variation case.
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that the velocity distribution is independent of thermal

conductivity variation ek .
The behavior of Nusselt number with ek (conductiv-

ity variation) is depicted in Fig. 4(a) for different values

of eK (permeability variation) and b ¼ 0 (constant vis-

cosity model). The general trend of the Nusselt number

is found to increase with increase of both the conduc-

tivity and permeability. Also it can be seen from Eq. (21)

that, especially when b ¼ 0, the prime effect of thermal

conductivity variation is in the opposite direction to that

of permeability variation. The effect of variable viscosity

on the Nusselt number is shown in Fig. 4(b) for a fixed

eK and varying ek . With increasing viscosity and con-

ductivity variations, the Nusselt number is found to

decrease and increase significantly, which may be ex-

plained by the enhancement in lateral mixing, resulting

Fig. 4. Variation in Nusselt number with conductivity and permeability for continuous weak variation case.
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from the increase of local velocities near the walls for

small values of b. The percentage decrease in the Nusselt

number compared to that of a constant viscosity model

is displayed in Fig. 4(c), for varying conductivity and

different values of b. It is found to decrease in small

magnitude with conductivity but increase more with b.
Fig. 4(d)–(f) display the Nusselt number behavior for a

fixed value of conductivity and varying permeability. An

increasing trend is noticed in Fig. 4(d) and (e) with eK ,
thus explaining the effect of permeability, whereas the

percentage decrease is found to decrease in small mag-

nitude with permeability, seen in Fig. 4(f). Increase in

the viscosity variation parameter leads to a decrease the

Nusselt number.

Fig. 5. Temperature distributions for step-wise variation case.
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Turning now to the case of step-wise variation, the

results are shown in the remaining figures for two dif-

ferent values of n viz., 0.25 and 0.75. Fig. 5(a) and (b)

show the temperature distributions of both the constant

and varying viscosity models across the channel for

different combinations of K2=K1 and for a fixed value of

n and k2=k1 that is, 0.25 and 1.0 respectively. The tem-

perature distribution is found to increase with the in-

crease of the permeability ratio K2=K1 across the channel

for both cases. But for the case of varying viscosity

model (non-zero b) the temperature is found to be less,

especially in Region 1, due to the fact that the en-

hancement of lateral mixing resulting from the increase

in the local velocities near the walls. The variations in

the thermal conductivity ratio k2=k1 do not seem to affect

the temperature distribution significantly as in the

above, and are displayed in Fig. 5(c) and (d). The above

discussion also holds at higher values of n, viz. 0.75 (Fig.

5(e) and (f)), except that the jump (due to the sudden

change in permeability) in the temperature distribution

is now being observed at y ¼ 0:75 instead at y ¼ 0:25, as
in the above cases.

For n ¼ 0:25 and different combinations of the

thermal conductivity ratio k2=k1, the heat transfer rate

increases with the permeability ratio K2=K1 and are

displayed in Fig. 6(a). The effect of viscosity parameter b
is found to reduce the Nusselt number, as in the case of

the continuous weak variation case, whereas increasing

values of thermal conductivity ratio k2=k1 lead to in-

crease in the magnitude of the Nusselt number. This

decrease in the heat transfer rate with viscosity variation

parameter is similar to that of earlier results reported for

a homogeneous porous medium [13]. Also for n ¼ 0:75
and for small values of b, the Nusselt number behaves in

a similar manner to that of the case n ¼ 0:25 with the

conductivity ratio as shown in Fig. 6(b). But for large

values of b (indication of a strong viscosity variation)

and n ¼ 0:75, the Nusselt number is found to decrease

with the permeability ratio, Fig. 6(b). This in turn re-

veals the importance of the present study. That is, if the

heat transfer occurs in flow of a viscous fluid (whose

viscosity strongly depends on temperature) through a

heterogeneous porous medium, then one should take

into account the viscosity variations which otherwise

Fig. 6. Variation in Nusselt number with K2=K1 and k2=k1 for step-wise variation case.
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results in an incorrect prediction of the heat transfer rate

with the permeability ratio.

Fig. 6(c) and (d) depict the Nusselt number behavior

with varying conductivity ratio and for different values

of K2=K1. Similar trend as in Fig. 6(a) is observed here

for the case of n ¼ 0:25. On examining Fig. 6(d) we infer

that even though the general nature of the Nusselt

number behavior resembles those in Fig. 6(b) for small

values of b, its behavior for large values of b ð¼ 0:2)
differs with that of Fig. 6(b) resulting in an increase with

conductivity ratio.

The percentage decrease in the Nusselt number for

two different values of n and for variation of the ratios

k2=k1 and K2=K1 are shown in Fig. 7(a)–(d). For n ¼
0:25, the percentage decrease is found to be nearly in-

dependent of the ratio K2=K1 (Fig. 7(a)) but for n ¼ 0:75,
an increase in the percentage decrease in the Nusselt

number is noted (Fig. 7(b)) with K2=K1. In the case of

percentage decrease in Nusselt number with conductiv-

ity ratio, it is seen in Fig. 7(c) and (d), that for the same

two values of n as in Fig. 7(a) and (b), the qualitative

behavior is reversed. That is, in Fig. 7(c) an increase in

percentage decrease in the Nusselt number is observed

with conductivity ratio k2=k1, whereas in Fig. 7(d) the

percentage decrease is found to be nearly independent of

the conductivity ratio.

4. Concluding remarks

An analysis of forced convection flow through a

heterogeneous porous medium under isoflux boundary

condition is attempted in the presence of viscosity vari-

ations. Results discussed in terms of velocity and tem-

perature distributions reveal that the fluid flow and heat

transfer characteristics are greatly changed by the vari-

ations in the permeability, thermal conductivity and

fluid viscosity. The percentage variation in the heat

transfer rate, calculated in terms of Nusselt number, for

the varying viscosity model is explored by comparing

with the earlier constant viscosity model. The effect of

viscosity variations taken into consideration here is

found to significantly alter the heat transfer rate by re-

ducing it. The prime reason for such reduced heat

transfer rate may be attributable to the enhancement of

lateral fluid mixing resulting from the increase of local

Fig. 7. Percentage decrease in Nusselt number with K2=K1 and k2=k1 for step-wise variation case.
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velocities near the walls, due to change in the fluid vis-

cosity. Further the behavior of the heat transfer rate is

found to decrease with the increase of permeability ratio,

only for strong viscosity variations, which cannot be

captured if one assumes a constant viscosity model.

Appendix A. Justification of Eq. (3)

We know that for most fluids under moderate tem-

perature changes viscosity can be expressed as a linear

function of temperature:

l ¼ l0ð1� aðT 0 � T 0
wÞÞ: ðA:1Þ

Introducing the dimensionless temperature T , Eq.

(A.1) is re-written as,

l ¼ l0½1� aðT 0
m � T 0

wÞT 	: ðA:2Þ

But from [11], we learn that the T ðyÞ distributes almost

linearly across the upper half of the channel and there-

fore we write

T ðyÞ ffi cð1� yÞ; ðA:3Þ

where c is a constant.

On using Eq. (A.3), Eq. (A.2) is re-written as

l ¼ l0½1� aðT 0
m � T 0

wÞcð1� yÞ	: ðA:4Þ

Defining

b ¼ caðT 0
m � T 0

wÞ; ðA:5Þ

Eq. (A.4) becomes Eq. (3):

l ¼ l0½ð1� bÞ þ by	:
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